Model complexity versus accuracy in aerosol dynamics

Robert McGraw¹, Ling Leng², Wei Zhu², Nicole Riemer³ and Matthew West⁴

Errors in modeling particle population dynamics can result in errors predicting CCN and optical properties but also errors in getting the dynamics right (e.g. lifetime/transport)

Optimization theory and sparse particle distributions

Min/Max:
$$\int_0^\infty c(r)f(r)dr \approx \mathbf{c} \cdot \mathbf{w}^{\mathrm{T}} \quad \text{property}$$

Subject to constraint

$$\int_0^\infty \sigma_k(r) f(r) dr \approx \mathbf{a_k} \cdot \mathbf{w^T} = \mathbf{M_k}$$

list:

measurement : model result

Together with: $W_i \ge 0$

non-negative psd

Recovery of QMOM 3-point quadrature using 6 radial moment constraints

Quantifying information content of model resolution refinement A geometric approach

Linear Program

Min/Max: scattering extinction
Subject to: 10, 20, 40 sectional
constraints
+ non-negativity
constraints
Repeat for different wavelengths

Nested Bounds

dotted curves: 10 bin constraints

dashed curves: 20 bins solid curves: 40 bins

red curve: Test distribution

Future Directions

- 1. Data processing and assimilation (poster this meeting)
- 2. Metrics development

Collaborations
With
FASTER

- 3. Adding measurement noise (sensitivity matrix from dual LP)
- 4. Aerosol dynamics beyond the QMOM
 - explore the tracking of more general aerosol properties: the new method is not limited to moments (QMOM is)
 - explore working on grids: these are adaptable and extendable to high dimension (the QMOM is mesh free)